NINETEENTH ANNUAL COLUMBUS INVITATIONAL MATHEMATICS TOURNAMENT

Sponsored by

THE COLUMBUS COLLEGE

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

March 6, 1993

* * * * * * * * * * * * * * * * *

The Columbus College Mathematics and Computer Science faculty welcome you to this year's tournament and to our campus. We hope that you will be successful on this test.

INSTRUCTIONS: This is a 90-minute, 50-problem, multiple-choice examination. There are five (5) possible responses to each question. You are to select the one (1) "best" answer to each. You may mark on the test booklet and on the paper provided to If you need more paper or an extra pencil, let one of the monitors know. When you are sure of an answer, circle the choice you have made on the test booklet. After you have worked all of the problems that you can work, carefully transfer your answers to the score sheet. Darken completely the blank corresponding to the letter of your response to each question. Mark your answers boldly with a No. 2 pencil. If you must change an answer, completely erase your first choice and then record the new answer. Incomplete erasures and multiple marks for any question will be scored as an incorrect response. The examination will be scored on the basis of +12 for each correct answer, -3 for each incorrect selection and 0 for each omitted item. Each student will be given an initial score of +200.

Pre-selected problems will be used for tie-breakers for individual awards. These problems, in the order in which they will be examined, are: 13, 17, 23, 36, and 40.

All pre-drawn geometric figures are not necessarily drawn to scale.

Review and check your score sheet carefully. Your student identification number and your school number must be encoded correctly on your score sheet.

When you complete your test, bring your pencil, scratch paper and answer sheet to the Test Monitor. You may leave the room after you have handed in your answer sheet. Please leave quietly so as not to disturb the other contestants. Please do not congregate outside the doors to the testing area. You may keep your copy of the test. Your sponsor will have a copy of the answers.

DO NOT OPEN THIS TEST UNTIL YOU ARE INSTRUCTED TO DO SO

1.	The 21/	differen 10. Find	the s	sum of	the n	umber	and it	s rec	Throce	1 •	*
	a)	24/10	b)	31/10	c)	9/5	, a)	29/1	LO	e)	13/5
2.	Repr not	resent the	solut	cion to	the :	follow	ing in	equali	Lty in	inte	erval
				-1 ≤	1 - 3	$2x \leq 4$	1				
	a) d)	[-5/2,2] [-3/2,4/	3]	b) e)	[-2, [-3,	9/2] 9/2]		ြ	[-11/	2,2]	
3.	and	ar enters l fifteen ation goi enters t	minute	es late km/hr.	r a s How	econd manv	car en	nters es aft	er th	e sec	110
	a)	30	b) 7	75	c)	45	d)	90		e)	60
4.	sim	at is the aple harmon = 2 cos (4 pect from	nic mo	otion c nere d	of an is th	object ne dist	t is re tance	eprese (in me	eters)	IJγ	
	a)	π/2	b) '	4	c)	1/4	d) 2/π	r :	e)	8π
5.	If π/2	$2 < B < \pi$	= -1, find	$\pi/2 \le A + B$	A ≤	π , and	d cos	B = si	ln (2B),	
	a)	$19\pi/12$	b)	$5\pi/6$	c)	17π/	12	d) 3 <i>1</i>	7/2	ė)	$3\pi/4$
6.	Dec	compose	$\frac{7-}{x^2+13}$	4x 3x - 5	into	the f	orm	A +	$\frac{B}{2x +}$	·	
	Fir	nd A + B.									
	a)	- 5	b)	-1	C)) 3	,	d) 6		e)	-4

How many gallons of water should be added to 1 gallon of pure antifreeze to obtain a solution that is 40% antifreeze?

a)

b) 2.5

1.5 C)

d) 1.75 e) 2.25

Find the range of the quadratic function $y = -5x^2 + 20x - 13$. 8.

a) $(-\infty, 7]$ b) $[2, \infty)$ c) $(-\infty, -13]$ d) $(-\infty, \infty)$ e) $[-7, \infty)$

Solve for B: A = H(b + B). 9.

 $\begin{array}{c} \text{(b)} \quad \text{B} = \frac{2A - bH}{H} \end{array}$

c) B = 2A - b

B = 2A - Hbd)

e) B = 2b - A/H

Which of the following functions has amplitude 3 and period 6? 10.

a) $y = 3 \sin (3x - 2)$ b) $y = 3 \tan ((\pi/3)x)$ c) $y = 3 \sin (12\pi x + \pi)$ d) $y = 3 \cos ((\pi/3)x - 2)$

e) $\bar{y} = \underline{1} \cos ((2\pi/3)x - \pi)$

If $(-\sqrt{3},-1)$ are the rectangular coordinates of a point, find 11. a pair of polar coordinates for this point.

a) $(-2, \pi/3)$ b) $(2,3\pi/4)$

c) $(2,4\pi/3)$

d) $(-2,\pi/6)$

e) none of the preceding

Which of the following is a vertical asymptote for 12.

$$y = \frac{x^2 - 21}{12x^2 - 25x - 75}$$
?

a) x = 5/3 b) y = -5/3 c) x = 0 d) x = 15/4 e) $x = \sqrt{21}$

13. Solve for x: $\log_{\sqrt{2}}x = -6$	13.	Solve	for	x:	log _{i∑} x	=	-6.
--	-----	-------	-----	----	---------------------	---	-----

a) 1/8 b) $\sqrt{3}$ c) 12 d) -8 e)

1/32

A life insurance table indicates that a man who is now x years old can expect to live y years longer. Suppose x and y are linearly related and that y=50 when x=24 and y=20when x = 60. At what age may a man expect to live 30 years longer?

a) 42

b) 53

c) 37 d) 48 e) 45

A ship leaves port and travels 55 km due south. It then 15. changes course and sails 41 km bearing N 27°15' W. How many kilometers is the ship from port at this point? (Round your answer to the nearest hundredth.)

a) 25.18 b)

21.12 c) 36.66 d)

96.00

e) 26.39

A goat is tethered to the corner of a square building that is 16. 20 feet on a side by a rope that is 30 feet long. Calculate its grazing area in square feet.

a) 675π

 725π b)

 900π C)

d) 600π

e) 450π

Find the equation of a circle having (3,-5) and (-3,-1) as 17. endpoints of a diameter.

a) $x^2 + y^2 = 6x - 4y - 4$ b) $x^2 + y^2 = 2y + 44$

c) $x^2 + y^2 = 6x - 4y$

d) $x^2 + y^2 = -6y + 43$

e) $x^2 + y^2 = -6y + 4$

 $\frac{(2a^b)^2 (-4a^{2+b})}{8a^{4b}}$. 18. Simplify the following expression:

a) $-2a^{b+2}$ b) $2a^{2-b}$ c) $-2a^{b-2}$ d) $\frac{-a^{b+2}}{2}$ e) $-2a^{2-b}$

19.	area	the surfa a of a ci timeters	rcle	of radi	us 6	tain cent	spher timeten	e is	the find	e same	e as radiu	the s (in
	a)	12	b)	6		c)	3		d)	2	(e) 9
20.	Dete the	ermine the intersec	ne are ction	ea (in s of the	squar regi	e un ons	its) c x² + y²	of th 2 ≤ :	ne re 16 an	egion nd y	whic ≥ x	h is
	a)	π	b) 4	1π	c)	2π		d)	8π		e)	16π
		• .										
21.	Fine	the sur	n of t	the foll	Lowin	gin	finite	ser	cies	:		
		1/2 + 3	L/2 ² +	1/23 +	1/24	+ .	• •				•	
	a)	1	b) <u>5</u>	5 <u>11</u> 512	c)	2		d)	<u>15</u> 16		e)	1023 1024
22.	A bi	icycle wh le of 720 ed?	neel (of diame How far	eter : (to	20 i the	nches neares	is r t ir	colle	ed thi has	rough the wl	an heel
	a)	20π	b)	126	c)	25	0	d)	82	2	e)	40
	If A	$n(A)$ repart A , B and $n(A) = 1$ $\cap C$ C	C are	e three = n(C) =	fini: = 16,	te s n(A	ubsets (of = 11	a ur L, n	niver: (A ∩ (sal so C) = !	et U,
	a)	27	b)	30	c)	24		d)	21		e)	15
24.		sinh x =			and	co	sh x =	(e ^x	+ e	-x)/2,	find	l .
	•	$nh x)^2 -$	·	-								
	a)	.5	b)	2e ²	c	;)	-1	d) 0		e)	1
25.	If 8	$3^{x} = 27,$	find	4 × .								
		log ₂ 3			c)	log ₈	27	d)	3	e)	100	₃₄ 27

26.	bottom of a	right cir If the ta	cular cyl ank is h	indrical	tank as it	the top and did to cover the radius r
	a) h	b) 2h	c)	h ²	d) 2πh	e) πh^2
27.	The diameter 12, and CD, 5. Find the	which is placed to the length of the white which the white was a constant of the white which is a constant of the which is property and the white was a constant of the white which is property and the white which is property and the white was a constant of the white which is property and the white white white was a constant of the white white white which is property and the white was a constant of the white white white white was a constant of the white white white was a constant of the white white white white was a constant of the white white was a constant of the white white white white was a constant of the white white white white was a constant of the white white was a constant of the white was a constant of the white white white white was a constant of the white was a constant of the white was a constant of the white white was a constant of the was a constant of the white was a constant of the was a co	perpendic of AD.	ular to t	che diameter) has length , has length
	a) 4	b) 2.8	c)	6 - \(\square\)	d) 9	e) 3.5
28.	by 960 meter forming a s shrinking	ers, a fari steadily gr rectangle (mer cuts cowing boo of uncut	swaths a cder or c wheat in	round the o ut wheat an	s 720 meters utside, thus d a steadily . How wide
	a) 120 m	b) 480 i	m c) 1	74.3 m	d) 420 m	e) 720 m
29.	Find c so reciprocal:		wo soluti	ons of 6	$x^2 - 13x + 6$	c = 0 are
	a) 2/3	b) 1/3	c)	2	d) 6	e) 1/6
30.	irregular paidewalk by In fact, we and we have we can eas.	pond. We not let do not let do not en	wish to d know the ven know tion of g he measur	etermine radii of where th etting o ements a	lk surround the area A the two ci eir common ur feet wet = 5 and b f the sidew	of the rcles. center is . However, = 7 as
	(a) 2π	b) 3π	c)	4π	d) 5π	e) 6π
31.	If $f(x) = x$	$x^3 + 1$ and	d(x) = x	+ 2, fir	nd g(f(2x))	· · · · · · · · · · · · · · · · · · ·
	a) x^3+3x+2	;	b) 8x ³	+3	c) 8x ³ +	12x ² +6x+3
	d) $8x^3+12x$	² +12x+9	e) x^3+	2x+3		

32.	If a	a + b = 1	and a ²	+ b ²	= 2,	find a ³	$+$ b^3 .			
	a)	1	b) 2		c)	2.5	d)	3	e)	1.5
33.	If	$(.67)^{H} =$.5, fin	d the	value	of 32	(.67) ^{4H} .			
	a)	128	b) 64		c)	16	d)	8	e)	2
34.	by by burder	nattan Is Peter Mir chase, Mi wing inte t account the year	nuit in nuit ha rest at be app	1626 : d put 6 per	for \$1 the 1 cent	24. If money i compour	, instea n a sav nded ann	ad of ings a ually,	making ccount what w	ould
	a)	3	b) 49		c)	82	d)	61	е) 70
35.	Sol	ve for y	in term	s of :	x: 1	og _a (x +	y) = 10	og _a x +	log _a y	
	a)	x b)	x - 1	c)	x/(x - 1)	d)	1 - x	e)	0
36.	Let	log repr	resent 1	.og ₁₀ .	Eval	uate				
	log(1/2) + lo	g(2/3)	+ log(3/4)	+ +	log(98/	(99) +	log(99/	100)
	a)	-∞	b) 10	2	c)	-2	d)	-10	e)	-1
37.	wil wri 400 One e =	collected fill 74 tten so pof his pof his continuous co	volume profusel papers w contribu	es whe ly on : vere w utions	n com mathe ritte was	pleted. matical n after the int	No ot topics he was croducti	her pe . Rem total on of	erson na markably ly blin the num	r, nd. nber
	a)	Napier		b)	Eule	r i	c)	Eins	tein	
	d)	Cardano		e)	Eucl	id				

38.	The equation $x^4 - 68x^2 + 256 = 0$ has four solutions. The soft the absolute values of the four solutions is	um
	a) 68 b) 0 c) 256 d) 20 e) 1	.20
39.	order. Suppose that P is a point in the interior of rectang ABCD and at distances a, b, c and d from A, B, C and D, respectively. Which of the following must be true?	: ;le
	a) $a^2 + b^2 + c^2 = d^2$ b) $a^2 + b^2 = c^2 + d^2$ c) $(a + c)^2 = (b + d)^2$ d) $a + b + c + d = 1$	
	e) $a^2 + c^2 = b^2 + d^2$	
40.	Two ordinary dice are tossed. What is the probability of t number on one of the dice being twice that on the other?	:he
	a) 1 b) 5/6 c) 2/3 d) 1/6 e) 7/	136
41.	Find the area of an isosceles triangle with two sides equal s when the angle between the two equal sides is denoted by	to 0.
100	a) $\frac{s^2}{2}$ b) $s \sin \theta$ c) $\frac{s^2}{2} \sin \theta$ d) s^2 e) $\frac{s^2}{4} \sin \theta$	n 0
42.	Early in the morning a tree casts a shadow of 20 feet. Lat in the day, when the inclination of the sun is twice as larg the shadow is 8 feet. How tall is the tree?	ter ge,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a) 8 ft b) 10 ft c) $5\sqrt{2}$ ft d) 12 ft e) $4\sqrt{5}$	ft
43.	If $x_1 = 8500$, $x_2 = 8330$, $x_3 = 8480$, $x_4 = 7960$, and $x_5 = 8030$	
	constitute a random sample of size 5, and $\overline{x} = (x_1 + x_2 + x_3 + x_4 + x_5)$	/5,
	the sample variance, denoted by s2, is defined by	
	$s^2 = \sum_{i=1}^{5} (x_i - \overline{x})^2/4$. Find s, the sample standard deviation,	
	(to the nearest hundredth).	
	a) 225.30 b) 8260.45 c) 251.89 d) 63450.92 e) 50°	760

44.	A certain radioactive element has a half-life of 1690 years. Starting with 30 milligrams there will be $q(t)$ milligrams left after t years, where
	$q(t) = 30(.5)^{kt}$.
	How many milligrams (to the nearest hundredth) will be left after 2500 years?
	a) 10.76 b) 14.93 c) 0 d) 7.5 e) 18.78

A man bought x 39-cent pens and y 69-cent pens for \$11.37. Find x + y.

- a) 23 b) 27 c) 19 d) 33 e) 17
- 46. The number of ways in which it is possible to distribute m distinct objects into n identical containers $(m \ge n)$, with no container left empty, is

$$\frac{1}{n!} \sum_{K=0}^{n} (-1)^{k} \binom{n}{n-K} (n-k)^{m}$$

This will be denoted by S(m,n) and is called a Stirling number of the second kind. Find S(7,3).

- a) 90 b) 65 c) 63 d) 301 e) 25
- 47. Consider the following Pascal program segment, where i, j, and k are integer variables.

How many times (s, the Write statement executed in this program segment:

a) 210 b) 420 c) 1540 d) 1140 e) 20!

- Let $A = \{1, 2, 3, ..., 15\}$. How many subsets of A contain all of 48. the odd integers in A?
 - 2^{15} a)
- b) 2^7 c) 2^6
- d)
- Given that the expansion of $1/(1-x)^3$ is $\sum_{i=0}^{\infty} \binom{2+i}{i} x^i$, find the coefficient of x^{15} in the expansion of

$$(x^3 - 5x)/(1 - x)^3$$
.

- a) 136

- b) -509 c) 91 d) 211 e) -29.
- In an organic laboratory, Kelsey synthesizes a crystalline 50. structure that is made up of 1,000 triangular layers of atoms. The first layer of the structure has one atom, the second layer has three atoms, the third layer has six atoms, and, in general, the nth layer has 1 + 2 + 3 + ... + n atoms (see Figure (3)). How many atoms are there in one of these crystalline structures?

 - a) 5.005×10^5 b) 5.01501×10^5 c) 1.66167×10^8
- - d) $4.141712475 \times 10^{10}$ e) 1.67167×10^{8}

Each problem that I solved became a rule which served afterwards to solve other problems.

- Descartes

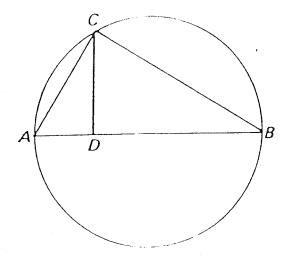


Figure 1

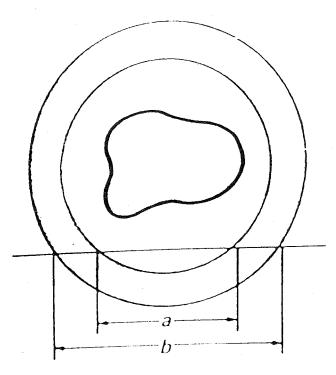


Figure 2

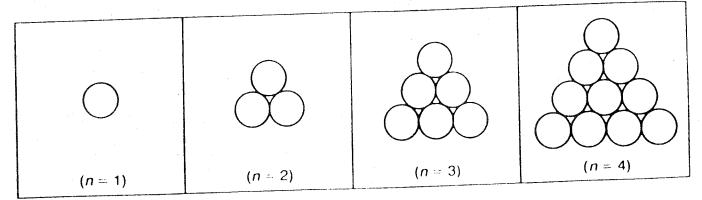


Figure 3