Placing a New Fire Pit in Existing Patio

Title: Finding the Area of Shaded Region
MM2G1. Students will identify and use special right triangles.
b. Determine the lengths of sides of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.

MM1G3. Students will discover, prove, and apply properties of triangles, quadrilaterals, and other polygons.
d. Understand, use, and prove properties of and relationships among special quadrilaterals: parallelogram, rectangle, rhombus, square, trapezoid, and kite.
MM2P2. Students will reason and evaluate mathematical arguments.
d. Select and use various types of reasoning and methods of proof.

Problem: Gary wanted to redo his back yard rectangular patio. He wanted to place a square fire pit where the shaded region is in the drawing above. What will be the size of the fire pit in square yards?

"Created by participants in Building Connections in High School Mathematics, a 2011 project of the Columbus Regional Mathematics Collaborative using Teacher Quality Funds."

Solution: Let's begin by looking at $\Delta \mathrm{AQB}$ and find the height with AB the base.

We know that XQ has the same length as AX which is 2.5 yards because $\triangle \mathrm{AXQ}$ is an isosceles triangle. Similarly, the height of $\Delta \mathrm{CDS}$ with CD as base is 2.5 yards.

Thus QS $=[6-2(2.5]$ yards $=1$ yard
Then $\mathrm{PQ}^{2}+\mathrm{PS}^{2}=\mathrm{QS}$ and since PQ and PS are equal sides of a square then PQ must be $\sqrt{2 / 2}$. Area $=\sqrt{ } 2 / 2 \times \sqrt{ } 2 / 2=1 / 2$ yards square.

B

