

Related Task:

Introduce the investigation as a scavenger hunt. Play the video as a review of the key vocabulary. Review the key vocabulary/concepts. Remind students they should measure carefully and use the same units to measure circumference and diameter for each object. Have students suggest ways to accurately measure these dimensions. (* Model the use of the trundle wheel as a measuring tool if used.)

Each group (2-3 students) should measure three circular objects. To follow the scavenger hunt theme choose particular objects to be measured that students will have to "find". Preferably one quite large such as an outdoor fountain, one medium sized such as a large planter and one smaller item such as a paper plate or coffee filter. Student data will vary and groups should be asked to share their averages.

The value of $\boldsymbol{\pi} \approx 3.14159$. Did anyone's average get close to this? Can this be used to give a definition of pi? Why might your ratio vary from 3.14? Measurement differences, calculation errors, etc. Why would we expect to get this number for our ratio? Students may have trouble viewing pi as a number that is constant for all circles. This insight is part of the goal of the lesson.

If $\pi=$ Circumference/diameter, can students make conjectures about a formula for circumference? $(C=\pi \mathbf{d})$ For diameter? $(d=C / \pi)$. Students this age may be unable to manipulate the C / d formula into other forms. They can be guided by giving "formulas" for C and d with a blank where pi is supposed to go. Ask: What number goes here? These relationships can be related to multiplication and division (if $3 \times 4=12$, then 12/4 $=3$ and $12 / 3=4$), therefore since $\pi \times$ diameter $=$ circumference, then circumference $/ \pi=$ diameter and circumference/diameter $=\pi$

Learn More:

Teacher Vision: http://www.teachervision.fen.com/math/lesson-plan/3430.html
NCTM: http://illuminations.nctm.org/LessonDetail.aspx?ID=L573
International Tennis Federation: http://www.itftennis.com/technical/research/lab/balls/size.asp
\qquad
\qquad

Circle Scavenger Hunt

Directions:

1. Write at least two math facts you know about circles. Examples: what is the diameter, what is the radius, what is the circumference or some other fact you remember.
2. Measure the circumference and diameter of three circular objects.
3. Calculate the ratio of circumference to diameter for each of the three objects.
4. Find the average of the three ratios.

	Circumference (measure to one decimal place)	Diameter (measure to one decimal place)	Ratio of Circumference to Diameter (give to 3 decimal places)

Average Ratio: \qquad
5. Discuss your average ratio with your partner or group. Are your findings related to the special number pi? Pi is approximately equal to 3.14159 .

Can you now give a definition for pi (or π)? \qquad
6. Measure the circumference of the tennis ball. Using what you now know about circles, does the tennis ball meet International Tennis Federation rules that the diameter of a ball must be between 2.575 and 2.700 inches? (Yes or No). Describe how you decided this:

